Algebra III 100 Points

Notes.

- (a) Begin each answer on a separate sheet and ensure that the answers to all the parts to a question are arranged contiguously.
 - (b) Assume only those results that have been proved in class. All other steps should be justified.
 - (c) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers \mathbb{C} = complex numbers.
 - 1. [10 points] Find an $n \times n$ matrix over \mathbb{Q} whose characteristic polynomial is

$$\sum_{i=1}^{n+1} 2^i X^{n-i} = X^n + 2X^{n-1} + \dots + 2^n.$$

2. [12 points] Let G be the abelian group generated by x, y, z satisfying the relations

$$x + y = 0$$
, $2x = 0$, $4x + 2z = 0$, $4x + 2y + 2z = 0$.

Write G as a direct product of cyclic groups.

3. [20 points] Which of the following are algebraic integers? (Give brief justifications for your answers.)

$$2^{1/3} + 1$$
, $2^{-1/3} + 1$, $(\sqrt{-3} + 1)/2$, $(\sqrt{-5} + 1)/2$.

4. [16 points]

Prove that 5^{2n+1} can be written as a sum of two squares in \mathbb{Z} in exactly 2n+1 ways. (Hint: Use factorization in the ring of Gaussian integers.)

- 5. [6 points] Factor 7 i as a product of primes in $\mathbb{Z}[i]$.
- 6. [15 points] Find 3 monic polynomials of degree 3 in $\mathbb{Z}[X]$ whose corresponding images in $(\mathbb{Z}/3\mathbb{Z})[X]$ are distinct and irreducible. Explain why each of these polynomials is also irreducible over \mathbb{Q} .
 - 7. [6 points] Prove that there are infinitely many units in the ring $\mathbb{Z}[\sqrt{2}]$. (Hint: $\sqrt{2}+1$ is a unit.)
- 8. [15 points] Give an example of a maximal ideal \mathfrak{m} in $\mathbb{R}[X,Y]$ such that $\mathfrak{m} \neq (X-a,Y-b)$ for any $a,b \in \mathbb{R}$.